Solid Rocket Motor Preliminary Design Sizing and Performance Analysis

Case Foster

Tony Russo

Problem Statement

Design a solid rocket motor using 18% Al, 71% AP, 11% HTPB. Perform preliminary sizing of the BATES grain and nozzle to estimate performance at the stated initial conditions.

Parameter	Symbol	Value			
Mission ΔV	ΔV	$550\mathrm{m/s}$			
Initial mass limit	m_0	$45.36\mathrm{kg}$			
Initial chamber pressure	P_c	12.410 MPa			
Design thrust	F	2224.1 N			
Ambient pressure	P_a	$0.07584\mathrm{MPa}$			
Grain geometry	_	BATES (outer inhibited)			
Length-to-diameter	L/D	8.5			
Expansion ratio	ε	21.297			
Combustion temperature	T_c	$3400\mathrm{K}$			
Molecular weight	MW	$31\mathrm{g/mol}$			
Propellant density	ρ_p	$1800\mathrm{kg/m^3}$			
Specific heat ratio	γ	1.18			
Burning law exponent	n	0.30			
Burning law coefficient	a	$0.399 (\text{cm/s}) / (\text{MPa})^{0.3}$			

Table 1: Design Inputs (project brief)

Key Relations Used

$$\dot{r} = a P_c^n$$

$$R = \frac{R_u}{MW}, \quad R_u = 8314.462 \text{ J/(kmol · K)}$$

$$c^* = \sqrt{\frac{RT_c}{\gamma}} \left(\frac{\gamma + 1}{2}\right)^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

$$\frac{A}{A^*} = \frac{1}{M} \left(\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} M^2\right)\right)^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

$$\frac{P_e}{P_c} = \left(1 + \frac{\gamma - 1}{2} M_e^2\right)^{-\frac{\gamma}{\gamma - 1}}$$

$$C_F = \sqrt{\frac{2\gamma^2}{\gamma - 1} \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma + 1}{\gamma - 1}} + \frac{P_e - P_a}{P_c} \frac{A_e}{A_t}}$$

$$A_t = \frac{F}{P_c C_F}, \quad d = \sqrt{\frac{4A}{\pi}}$$

Table 2: Section A1: Solid Propellant Grain Sizing and Geometry

Quantity	Value	
Grain length L	$0.777\mathrm{m}$	
Grain volume V_p	$4.9075 \times 10^{-3} \mathrm{m}^3$	
Grain mass m_p	$8.8335\mathrm{kg}$	
Inner port diameter d_i	$18.2835\mathrm{mm}$	
Outer diameter d_o	$91.48\mathrm{mm}$	
Web thickness ω_o	$36.604\mathrm{mm}$	
Volumetric loading fraction (VLF)	96%	
Port-to-throat area ratio	2.511	

All Work / Step-by-Step

Unit Conversions and Constants

$$a = 0.399 \frac{\text{cm}}{\text{s} \cdot \text{MPa}^{0.3}} = 0.00399 \frac{\text{m}}{\text{s} \cdot \text{MPa}^{0.3}}, \qquad P_c = 12.410 \text{ MPa} = 12.410 \times 10^6 \text{ Pa}$$

$$MW = 31 \text{ kg/kmol}, \quad R = \frac{8314.462}{31} = 268.20845 \text{ J/(kg K)}$$

Burn Rate

$$(12.410)^{0.3} = 2.126237$$
, $\dot{r} = 0.00399 \times 2.126237 = 8.4938 \times 10^{-3} \text{ m/s}$

Characteristic Velocity

$$\sqrt{\frac{RT_c}{\gamma}} = \sqrt{\frac{268.20845 \times 3400}{1.18}} = 879.4276,$$

$$\left(\frac{\gamma+1}{2}\right)^{\frac{\gamma+1}{2(\gamma-1)}} = 1.68378,$$

$$c^* = 879.4276 \times 1.68378 = 1481.402 \text{ m/s}$$

Propellant Mass and Volume

$$\Delta V = 550 \text{ m/s}, \quad m_p = m_0 \left(e^{\Delta V/c} - 1 \right) / e^{\Delta V/c}$$

$$m_p = 45.36 \cdot \left(e^{550/2539.336} - 1 \right) / e^{550/2539.336} = \boxed{8.8335 \text{ kg}}$$

$$V_p = \frac{m_p}{\rho_p} = \frac{8.8335}{1800} = \boxed{4.907488 \times 10^{-3} \text{ m}^3}$$

Delivered Exhaust Velocity and Specific Impulse

$$c = C_F \cdot c^* = 1.71419 \cdot 1481.36 = 2539.336 \text{ m/s}$$

$$I_{sp} = \frac{c}{g_0} = \frac{2539.336}{9.80665} = 258.9 \text{ s}$$

Thrust Coefficient

Note: Exit pressure P_e and associated flow properties were obtained using the Virginia Tech Rocket Propulsion Calculator under initial operating conditions.

$$C_{F,\text{iso}} = 1.7058, \quad \frac{P_e - P_a}{P_c} \frac{A_e}{A_t} = -0.00934, \quad C_F = 1.71419$$

Throat/Exit Areas and Diameters

$$\begin{split} A_t &= \frac{F}{P_c C_F} = \frac{2224.1}{(12.410 \times 10^6) \times 1.71419} = 1.04550 \times 10^{-4} \text{ m}^2, \\ d_t &= \sqrt{\frac{4A_t}{\pi}} = 11.538 \text{ mm}, \\ A_e &= \varepsilon A_t = 2.2266 \times 10^{-3} \text{ m}^2, \quad d_e = 53.245 \text{ mm} \end{split}$$

Mass Flow

$$\dot{m} = \frac{P_c A_t}{c^*} = \frac{12.410 \times 10^6 \cdot 1.04550 \times 10^{-4}}{1481.402} = 0.87583 \text{ kg/s}$$

Table 3: Section B1: Nozzle Sizing and Exit Flow Properties

Quantity	Value
Throat diameter d_t	$11.538\mathrm{mm}$
Exit diameter d_e	$53.245\mathrm{mm}$
Initial Kn Kn ₀	547.9
Final Kn Kn _{final}	1936.47
Maximum Kn Kn _{max}	1936.47
Optimum nozzle length (conical) L_{conical}	$77.826\mathrm{mm}$
Optimum nozzle length (bell, 80%) L_{bell}	$62.261\mathrm{mm}$

Initial values (t=0)

Initial burning surface area (BATES geometry, adjusted):

$$r_i = \frac{d_{i,0}}{2} = \frac{0.0182835}{2} = 0.00914175 \text{ m},$$

$$r_o = \frac{d_o}{2} = \frac{0.09148}{2} = 0.04574 \text{ m}$$

$$S_b(0) = 2\pi r_i (17r_o) + 2\pi (r_o^2 - r_i^2)$$

$$S_b(0) = 2\pi (0.00914175)(17 \cdot 0.04574) + 2\pi \left((0.04574)^2 - (0.00914175)^2 \right)$$

$$= 2\pi (0.007105) + 2\pi (0.002009)$$

$$= 0.044643 + 0.012644$$

$$S_b(0) = \boxed{0.0572872 \text{ m}^2}$$

$$A_{\text{port},0} = \frac{\pi d_{i,0}^2}{4} = \frac{\pi (0.0182835)^2}{4} = 2.6255 \times 10^{-4} \text{ m}^2$$

$$\frac{A_{\text{port},0}}{A_t} = \frac{2.6255 \times 10^{-4}}{1.04550 \times 10^{-4}} = 2.511, \quad \text{Kn}_S(0) = \frac{0.0572872}{1.04550 \times 10^{-4}} = \boxed{547.9}$$

$$\dot{m}_{\text{gen}}(0) = \rho_p \, S_b(0) \, \dot{r} = 1800 \cdot 0.0572872 \cdot 8.4938 \times 10^{-3} = \boxed{0.8752 \text{ kg/s}}$$

At analytic burnout $(d_i \rightarrow d_o)$

$$S_{b,\text{final}} = \pi D_o(L - D_o + D_i) = \pi (0.09148)(0.776 - 0.09148 + 0.0182835) = \boxed{0.20198 \text{ m}^2}$$

Note: Since the grain exhibits progressive burning, the final Kn value corresponds to the maximum Kn. Therefore, $Kn_{max} = Kn_{final}$.

$$Kn_{\text{max}} = \frac{S_{b,\text{final}}}{A_t} = \boxed{1936.47}$$

$$\dot{m}_{\rm gen}(t_b) = \rho_p \, S_b(t_b) \, \dot{r} = 1800 \cdot 0.20198 \cdot 8.4938 \times 10^{-3} = 3.0835 \, \, \text{kg/s}$$

Theoretical Burn Time Calculation

The pressure during burn is given by:

$$P_c(r) = \left(\frac{c^* \rho_p a S_b}{A_t}\right)^{\frac{1}{1-n}}$$

$$P_c(r) = \left(\frac{1481.36 \cdot 1800 \cdot 6.323 \times 10^{-5} \cdot 0.143}{1.0455 \times 10^{-4}}\right)^{\frac{1}{1-0.3}} = \boxed{45,664,435 \text{ Pa}}$$

Now integrate to find total burn time:

$$T_b = \int_{r_0}^{r_o} \frac{dr}{a \cdot P_c(r)^n} = \int_{0.00914175}^{0.04574} \frac{dr}{6.323 \times 10^{-5} \cdot (45,664,435)^{0.3}} = \boxed{2.93 \text{ s}}$$

Reference steady throat mass flow (for comparison)

$$\dot{m}_{\text{nozzle,steady}} = \frac{P_c A_t}{c^*} = 0.87583 \text{ kg/s}.$$

Optimal web thickness for maximum S_b

$$\frac{dS_b}{dx} = 0 \Rightarrow x = \frac{1}{6}(L - 2D_i) = \boxed{\mathbf{x} = 370.586 \text{ mm}}$$

Optimum nozzle lengths

Assume $\alpha=15^{\circ},\,D_e=0.053245$ m, $D_t=0.011538$ m.

$$L_{\text{conical}} = \frac{D_e - D_t}{2 \tan(\alpha)} = \frac{0.053245 - 0.011538}{2 \tan(15^\circ)} = \boxed{77.826 \text{ mm}}$$

$$L_{\text{bell}} = 0.8 \cdot L_{\text{conical}} = \boxed{62.261 \text{ mm}}$$

Initial and Nozzle Properties (Virginia Tech Calculator)

Table 4: Initial Nozzle Properties (Virginia Tech Calculator)

Quantity	Symbol	Value
Exit pressure	P_e	$0.0621043\mathrm{MPa}$
Exit Mach number	M_e	3.71724
Exit temperature	T_e	$1515.42\mathrm{K}$
Speed of sound at exit	a_e	$692.518{ m m/s}$
Exit velocity	V_e	$2574.25\mathrm{m/s}$
Exit density	$ ho_e$	$0.152806\mathrm{kg/m^3}$

Table 5: Final/Maximum Kn Nozzle Properties (Virginia Tech Calculator)

Quantity	Symbol	Value
Chamber pressure	P_c	$75.33972\mathrm{MPa}$
Exit pressure	P_e	$0.3770278\mathrm{MPa}$
Exit Mach number	M_e	3.71724
Exit temperature	T_e	$1515.42\mathrm{K}$
Speed of sound at exit	a_e	$692.518{ m m/s}$
Exit velocity	V_e	$2574.25\mathrm{m/s}$
Exit density	$ ho_e$	$0.92767{\rm kg/m^3}$

B2: Ansys Simulation and Nozzle Visualizations

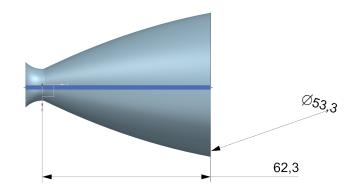


Figure 1: Bell nozzle geometry with dimensions.

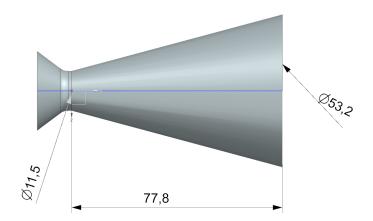


Figure 2: Conical nozzle geometry with dimensions.

Conical Nozzle - Line Plots

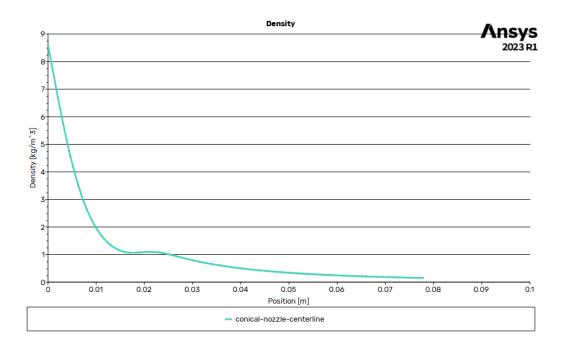


Figure 3: Density distribution along the centerline of the conical nozzle.

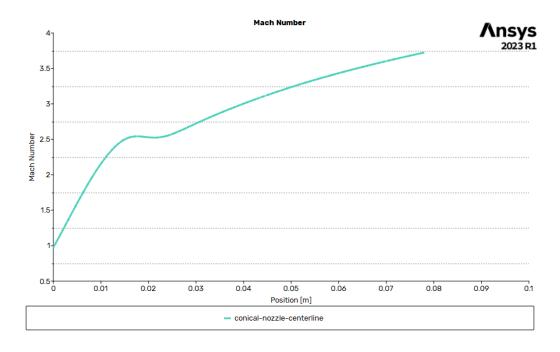


Figure 4: Mach number distribution along the centerline of the conical nozzle.

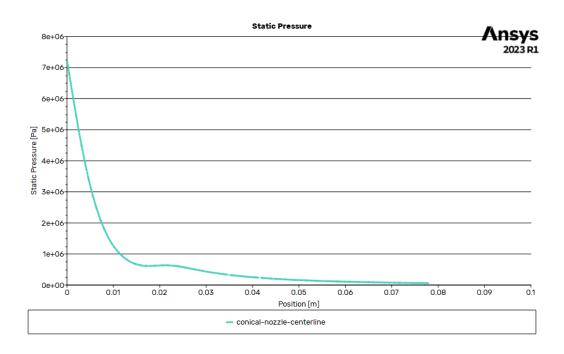


Figure 5: Static pressure distribution along the centerline of the conical nozzle.

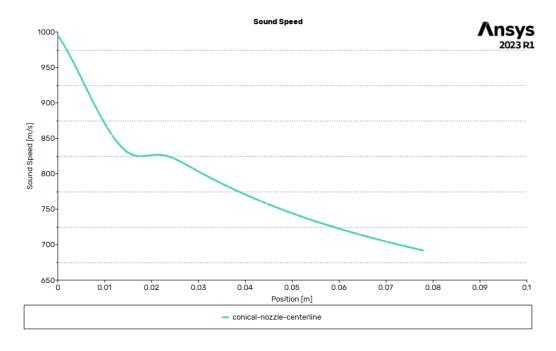


Figure 6: Speed of sound variation along the centerline of the conical nozzle.

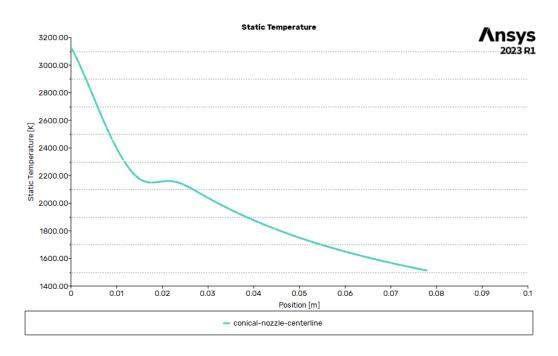


Figure 7: Static temperature distribution along the centerline of the conical nozzle.

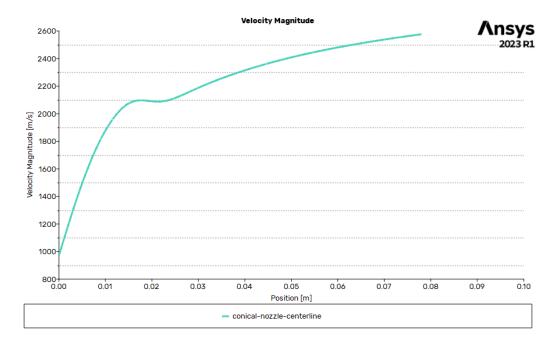


Figure 8: Velocity magnitude distribution along the centerline of the conical nozzle.

Conical Nozzle - Contour Plots

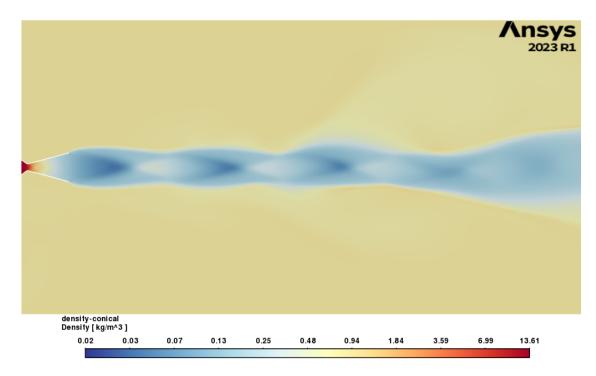


Figure 9: ANSYS simulation – Density contour in the conical nozzle.

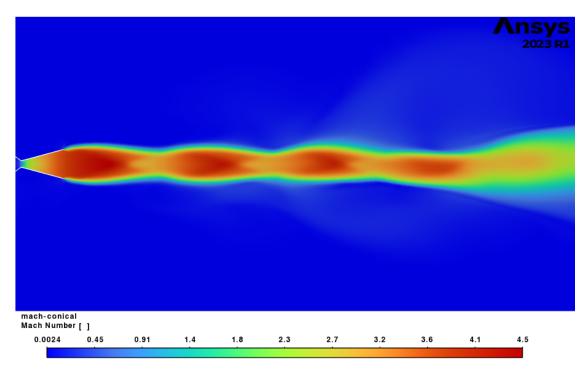
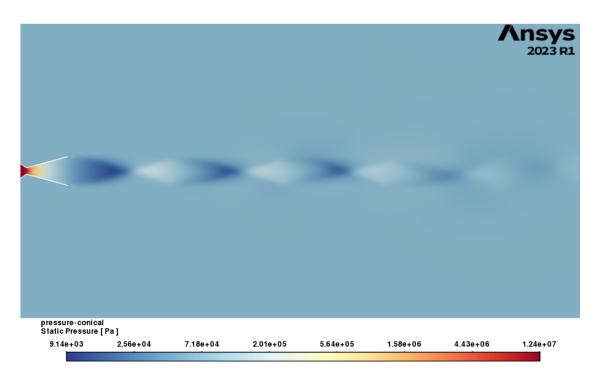



Figure 10: ANSYS simulation – Mach number contour in the conical nozzle.

 $Figure\ 11:\ ANSYS\ simulation-Static\ pressure\ contour\ in\ the\ conical\ nozzle.$

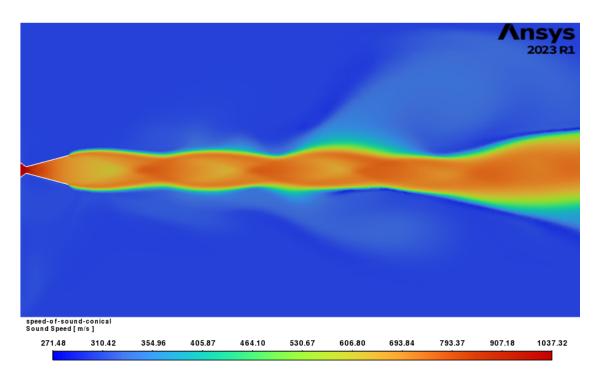


Figure 12: ANSYS simulation – Speed of sound contour in the conical nozzle.

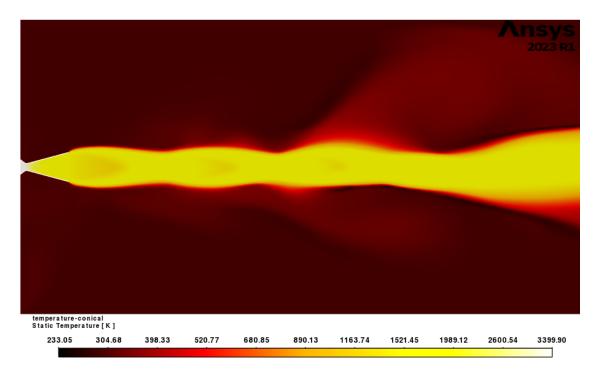


Figure 13: ANSYS simulation – Static temperature contour in the conical nozzle.

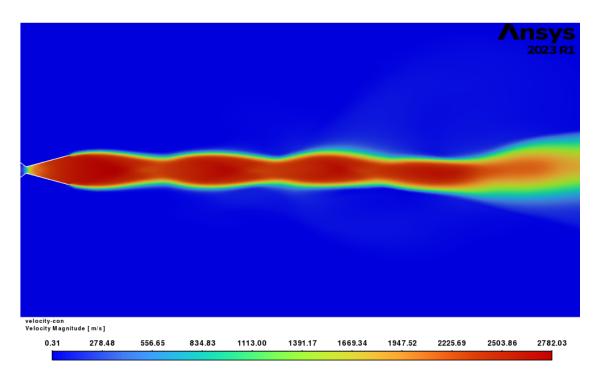


Figure 14: ANSYS simulation – Velocity magnitude contour in the conical nozzle.

Bell Nozzle – Line Plots

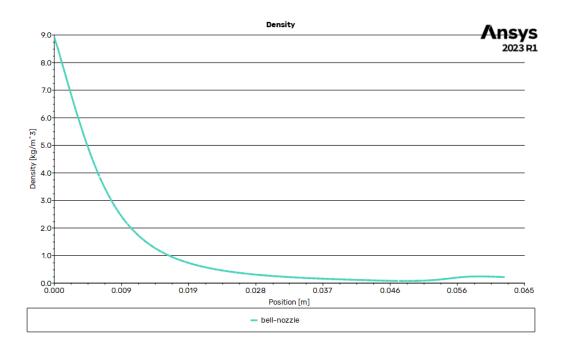


Figure 15: Density distribution along the bell nozzle.

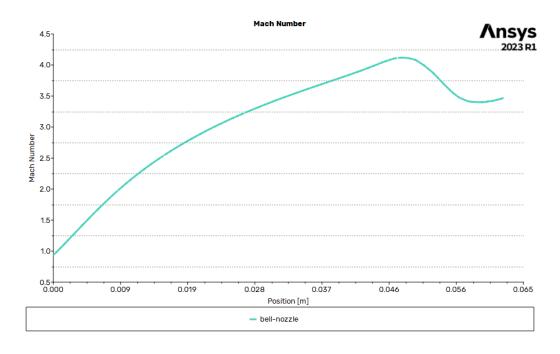


Figure 16: Mach number distribution along the bell nozzle.

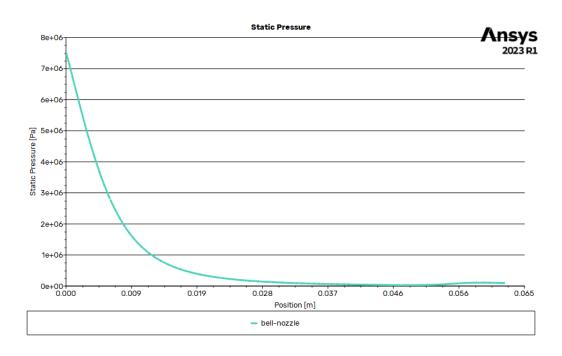


Figure 17: Static pressure distribution along the bell nozzle.

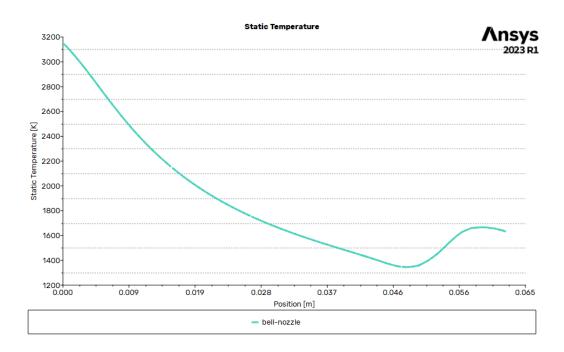


Figure 18: Static temperature distribution along the bell nozzle.

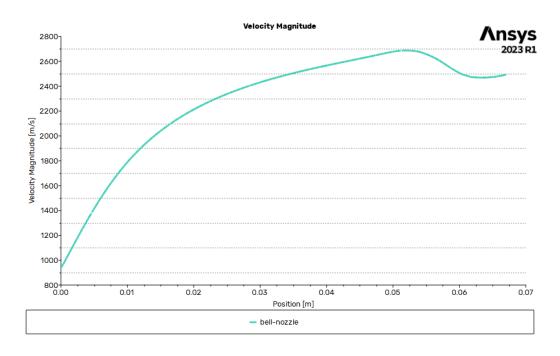


Figure 19: Velocity magnitude distribution along the bell nozzle.

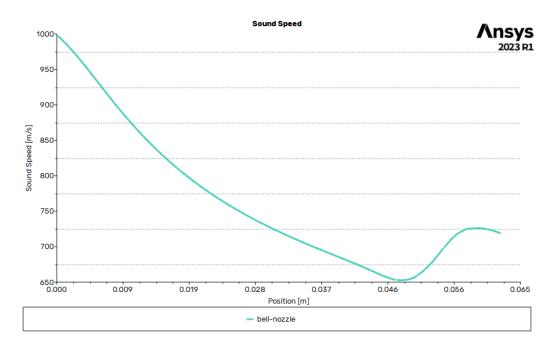


Figure 20: Speed of sound variation along the bell nozzle.

Bell Nozzle – Contour Plots

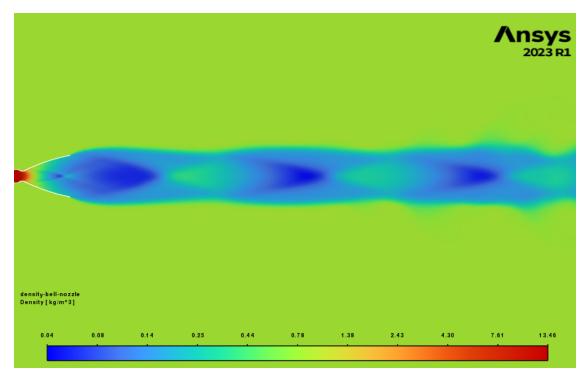


Figure 21: ANSYS simulation – Density contour in the bell nozzle.

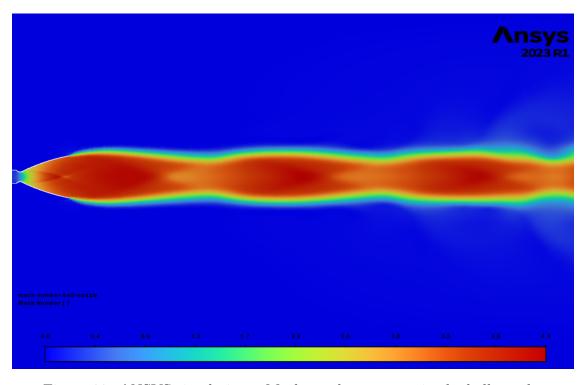


Figure 22: ANSYS simulation – Mach number contour in the bell nozzle.

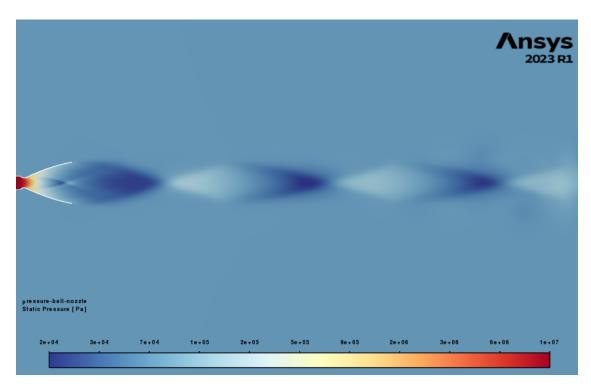


Figure 23: ANSYS simulation – Static pressure contour in the bell nozzle.

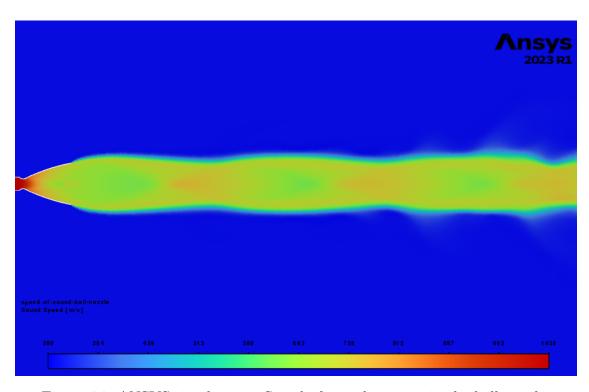


Figure 24: ANSYS simulation – Speed of sound contour in the bell nozzle.

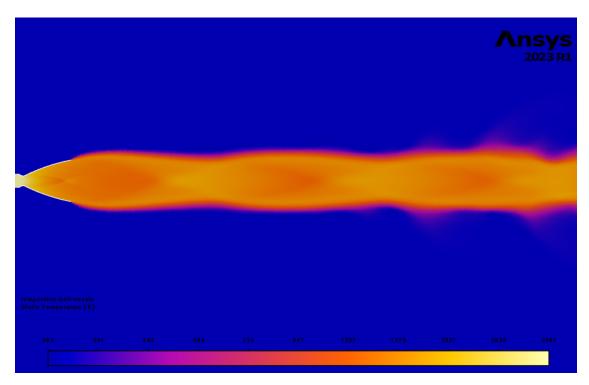


Figure 25: ANSYS simulation – Static temperature contour in the bell nozzle.

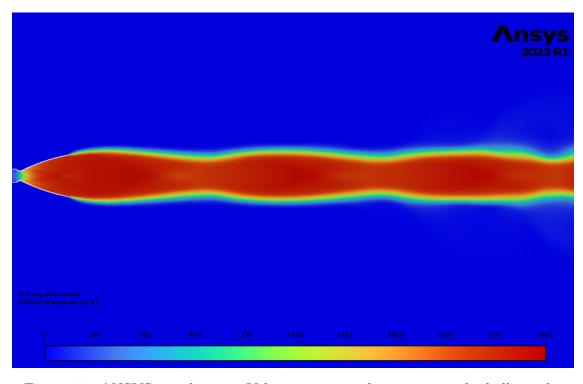


Figure 26: ANSYS simulation – Velocity magnitude contour in the bell nozzle.

C: OpenMotor Design

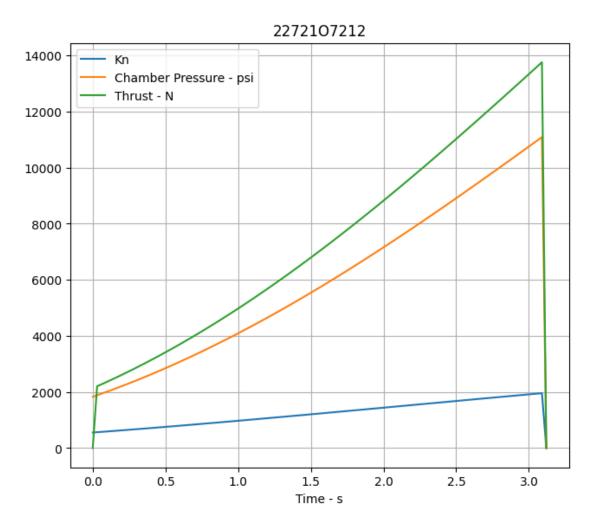


Figure 27: OpenMotor solid rocket motor design showing grain geometry and nozzle configuration.

Discussion: OpenMotor produces more realistic values as it accounts for grain regression, varying burning surface area, and nozzle flow effects dynamically throughout the burn. The theoretical values assume idealized steady conditions. Despite this, the percentage differences remain small: under 7% for burn time, and less than 2% for both impulse and I_{sp} . This indicates good agreement and validates the theoretical assumptions.

Quantity	Theoretical	OpenMotor	Percent Difference
Burn time (t_b)	2.93 s	3.12 s	6.47%
Specific impulse (I_{sp})	$258.9 \; s$	$255.17 \; s$	1.44%
Total impulse (I_{tot})	22,763.67 N·s	22,720.87 N·s	0.19%